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in fishes but in Amphibia and reptiles, would suggest that the cause

of the transformation of longitudinal stripes into spots on the lum-

bar and sacral regions of lizards is the result of the same specializing

growth-force. It may perhaps be regarded as a surviving remnant

of the segment-forming force, which has affected the pigment bands

in a manner identical in the vertebrates and insects. This trans-

formation of stripes into spots, and the fusion of two dorsal

tubercles into a median one, may be, then, the sign of some latent

or surviving amount of force concerned in the origin and forma-

tion of segments, which crops cut in the larval stages of insects and

in young lizards, resulting in this opisthenogenetic mode of origin

of spots from bands.

ORTHIC CURVES; OR, ALGEBRAIC CURVESWHICH
SATISFY LAPLACE'S EQUATIONIN TWO

DIMENSIONS.

BY CHARLES EDWARDBROOKS, A.B.

{Read May SO, 1904.)

I propose a study of the metrical properties of algebraic plane

curves which are apolar, or, as it is sometimes called, harmonic,

with the absolute conic at infinity. If we disregard the right line,

the simplest orthic curve is the equilateral (conic) hyperbola, and

the name equilateral hyperbola is sometimes extended to orthic

curves of higher order. Doctor Holzmuller, 1 who devotes a section

to curves of this kind, calls them hyperbolas ; :\m\ M. Lucas* calls

them "stelloides." M. Paul Serret, in a series of three papers in

Comptes Kindus* uses the word " equilfttere " for a curve with

1 Einfahrung in «//> 'Ihtorit iier lu^oiiaUn I't-rwamhi/ni/tfn utui tier

Con/ormen AbHUktmg«Ut GtlltSV I lolzmilller, Leipzig, 1882, p. 202. . . .

*•• Geometric des Polynomes," Felix LoCM, Jtumu l dt FEcott Polytech-

,,1,/ur, 1S7.J. t. XXVIII.
» Comptes A'eni/us, 1895, t. 121. Sur les hyperboles o|uilaleres d'ordxe

qMkoaqM, p. 340.

Sur let faitceaux regulicre* et lea iquilaterea d'ordre n. p. 372.

Sur let c<|uilatcrct compritct dam let equations

o = i,"' »/, /;» = //„,

p. 438.
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asymptotes concurrent and parallel to the sides of a regular polygon.

It seems advisable to follow M. Serret's usage, and to denote such

a curve by the name equilateral, using another term to express

apolarity with the absolute. For this purpose I have adopted the

word orthic.

If we use Cartesian coordinates, a curve

U{XY) = o,

is apolar with the absolute conic,

e»+y=o,
if

dx* + jy* —°*

In other words, an orthic curve is one which satisfies Laplace's

equation in two dimensions.

Part One—The Orthic Cubic Curve.

I. The Condition that a Carve be Orthic.

In the analysis which may be required, I shall employ conjugate

coordinates, x, x, which may be defined as follows : If X and Y
are rectangular Cartesian coordinates of any point, the conjugate

coordinates of that point are

x = X+iY,x = X—iY,

when the origin is retained, and the axis of X is chosen as the axis

of reals, or base line. It is sometimes convenient to think of x as

the vector from the origin to the point, and of x as the reflection of

this vector in the base line. If x, x is a real point of the plane, not

on the base line, x —x = o, x and x are conjugate complex

numbers. Since if one of its coordinates is known the other is

immediately obtainable, we shall, as a rule, name a point by giving

only one of its coordinates. It is convenient to reserve the letters

/ and t for points on the unit circle,

Now, Laplace's equation,

3*0'
_

dX* + dT* ~~ °>
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when applied to a function of x and x, becomes

PUjJtx )
'

dxdx

It follows that

:

The necessary and sufficient condition that a curve be ortliic is that

its equation in conjugate coordinates contain no product-term.

II. Kineviatical Definition of the Orthic Curve.

Let us now proceed to the study of the orthic curve of the third

order. I shall obtain the equation of an orthic cubic in a way

which will suggest immediately a method for the construction of

points on the curve.

The path of a point which moves in such a way that it preserves a

constant orientation from three fixed points is an orthic cubic curve.

If x is the moving point, and the three fixed points are a, /3, y,

then the sum of the amplitudes of the strokes which connect x with

a, /S, y> must remain constant. That is, we must have

(x —a) (x —fi) (*— r) = pr v

If the curve is to be real, the conjugate relation,

(x —a) (x —fi) (x —r)= PT i\

must hold simultaneously.

The equation of the curve is obtained by eliminating the para-

meter p between these. It is

** —(a + P + r )x»+(a0 + fr + r a)x —afr

This is the most general equation of the third degree which we

can have without introducing the product. As a consequence it

represents a perfectly general orthic cubic.

If we transform to

the ccntroid of afy, as a new origin, and so choose the base line

that i,
1

is real, the equation takes the form
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x* -f- <ZoX -j- a
x -f- a^x + x x = o.

The equation of any orthic cubic can be brought to this form.

The three points, a, y9 and y, are on the curve, and form what it is

convenient to call a triad of the curve.

III. The Orthic Curve is an Equilateral Curve.

Consider the orthic cubic,

x a —s^ -\- s*x —s t =v (x s —s x
x* -(- s.,x —s s ),

where the j's are the elementary symmetrical functions of a, 3

The approximation at infinity,

makes both the square and the cube terms vanish, and therefore

represents the asymptotes. The factors of this are

:

x —i-s
-

! —£V (-v —!*i) —o,

x —̂s, —a>. f v ( v —fr,) = o,

x —$s
1
—u>

t .?r
l
-(x —%s

l
)=o.

where «** = I.

These three lines meet at the point

which we may call the centre of the curve. Wenotice that

:

The centre of the orthic cubic is the centroid of the triad.

The clinants of the asymptotes are rj!, wvji, w'r^. They differ

only by the constant factor w. Now we know that multiplying the

clinant of a line by w is equivalent to turning the line through an

angle —. A rotation —about the centre sends each asymptote

into another. It follows that the asymptotes of an orthic cubic are

concurrent and parallel to the sides of a regular triangle. M. Serret
1

calls such a figure of equally inclined lines which meet in a point a

regular pencil, and a curve with asymptotes forming a regular

pencil he calls an " equilatere."

1 Comptes Rendus, Sur les hyperboles equilateres d'ordre quelconque. 1895

t. 121, p. 340.
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Now any cubic curve, the asymptotes of which form a regular

pencil, can be brought to the form :

x* -f- a„x -\- a
x -f- a x -\- x 3 = o,

in which we recognize it as orthic. It follows that

:

The orthic cubic and the equilateral of order three are identical.

The relation

(x —a)(x —$) (x —y) = pt
x
= z

may be regarded as mapping a line through the origin in the z

plane,

into the orthic cubic. We are thus able to identify the latter with

the curves discussed by Holzmuller 1 and by Lucas. 2

IV. Construction of Points of an Orthic Cubic.

A figure of the orthic cubic may be obtained without great diffi-

culty by constructing points of the curve. In order to show how

this may be done, it is necessary to prove the following lemma

:

Elements of the pencil of equilateral {orthic) hyperbolas, of which

the stroke fly is a diameter, intersect corresponding elements of the

pencil of lines through a on an orthic cubic of which apy is a triad.

For the line through a,

(x —a) = fn',

ami the equilateral hyperbola on fty as a diameter,

-ft)(x —r) = (>T",

intersect on the orthic < ubic

(x —«) (x —fl)(x —r) = p t
i

' Hftltmfll "///•// Atbil4tmgtn% p. 205.

' I.ucan, G6otnttrie dc» PolyaMBM, /ounml </< l' F.colt l\<!ytfcfmiqut,

[I, p. 2 J.
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if

If the two pencils are given, it is only necessary to pair off lines

and curves according to the relation

and to mark intersections. These will be points of the curve.

A very simple instrument for drawing the equilateral hyperbolas

required in the construction is made in the following way : Two
toothed wheels of equal diameters are attached beneath the drawing

Figure I. A unipartite orthic cubic which has three real inflections, one of

which is at infinity.

board in such a way that their teeth engage. The axles are perpen-

dicular to the board and come through it at /? and y. The axles,

which turn with the wheels, carry long hands or pointers which

sweep over the board. On account of the cogs, the wheels can turn

only through equal and opposite angles. As a consequence, x, the
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intersection of the hands, has a constant orientation from ft and y,

and in fact generates the orthic curve of the second order given by

(x —ft) (* —y) = pr,

which is the hyperbola required.

V. Mechanical Generation of an Orthic Cubic.

A mechanism which will actually draw an orthic cubic is very

much to be desired. One might be made in some such way as the

following : Suppose three hands like those described above (IV) to

be pivoted at a, ft and y. Let them be held together in such a way
that, while each is free to move along the others, they must always

meet in a point, which is to be the tracing point. Each hand is to

receive its motion from a cord wound about a bobbin on its axle.

The bobbins are to be equal in diameter. The cords pass through

conveniently placed pulleys, and are kept tight and vertical by

small equal weights at their ends. Consider, to fix ideas, those

three weights which by their descent give the hands positive

rotation. If, now, the tracing point be moved along an orthic

cubic which has a, ft, y for a triad, the total turning of the bobbins

will be zero, and as a consequence the total descent of the weights

will be zero. Conversely, if we can move these vertically and in

such a way that the total descent will be zero, the tracing point can

move only along an orthic cubic. This result will be obtained if

the centre of gravity of the three weights can be kept fixed. It will

not do, however, to connect the three weights by a rigid triangle

pivoted at its centre of gravity, for then they will not move ver-

tically. But since a parallel projection does not alter the centroid

of a set of points, the desired result will be attained if the weights

are constrained to vertical motion by guides of some kind, and are

kept in a plane which always passes through the centre of gravity of

one position of the weights.

VI. The Orthic Cubic through Six Points of a Circle.

Consider the general orthic cubic given by

x* —a^c* -f- a
x
x —a t

-\- a r x —a^c*
-f-

<*,**,== o.

.{% the unit circle,

xx = I,
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in six points, the roots of

x* —aoX
5

-|- a x
x K —dtX

3 + a^ —a 4x + as = o.

If we want the cubic to meet the circle in six given points, say r„

r„ . . . r g , then this equation must be identical with

X6
SiX* -f SfX* SgX* -f S<X

2 S^ -f s t = o,

in which the x*8 stand for the elementary symmetrical combinations

of the six r's. This requires

Ot
= Slt Hi = Xj, flj ss: Jj,

.<*» —s4 , a4 = j 5 , a„ = J,

The coefficients of the cubic equation are then precisely determined,

with the result that

:

But one orthic cubic can be constructed through any six points of a

circle.

It remains for us to show that one such curve can always be

drawn : that is, that the equation

\* —s
x
x* -j- s^x —s 3 -f- s t x —ssx* -\- s^x* = o

always represents a real curve. If we so choose the base line that

s s = i then we have

and the equation takes the form

x s —.syr -\- s^ —s9 -\- SfX —s xx* -f- x* = o,

which is, obviously, self-conjugate, and is there fore .satisfied by the

coordinates of real points. As a result

:

An orthic cubic can always be drawn through six points of a circle.

Jt is then determined uniquely.

VII. The Intersections of an Otthic Cubic with a Circle.

When the orthic cubic is referred to the six points in which it

cuts the unit circle, the equations of the asymptotes take the form

1=0, I, 2.
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These three lines meet at

x == u s \>

the centre. This point, the origin, and the point which is the

centroid of the six points on the circle lie on a line ; and the latter

point is midway between the other two. This leads to the interest-

ing fact that

:

The centroid of the six points in which any circle meets an orthic

cubic bisects the stroke from the centre of the curve to the centre of

that circle.

VIII. Triads of the Curve.

Wespoke of the three points a, /3, y, which have the same orienta-

tion from every point of the curve, as a triad of the curve. Let us

see how many such triads there are, and how they are arranged.

The relation

(x —a) (* —fi) {x —r) = *

may be regarded as establishing a correspondence between points x
in one plane and points z in another plane, in such a way that if z

describe a line £ through the origin, the point * generates an orthic

cubic on afiy as a triad. To every position of z on the director line

c there correspond three points in the .x-plane. I shall show that each

such set of three points is a triad. Write

F (x) =(x—a) (x —0) (x —y).

Then, if x u x lt x t , are the three points which correspond to z,

F(x) —z = (x —x,) (x —Xt) (* —**)•

And also

F (x) —z' = (x —*,') (x —x t ') (x —xt ').

Now this relation is satisfied by .r,, or x t , or x t .

P(«,) —/ as (* —*,') (*, —*/) (a, - .v,') =z —z'.

Since z —z' is a point of the director line, it follows that the three

points x
t

'

t
x t

', Xt, which < orrcspond to any point z' of the director

line, have the same orientation from every point of the curve. We
conclue that :

I ,< rvrry foint of the dire, tor line corresponds a triad ; all the
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points of the curve have the same orientation from any triad, and all

the triads of the curve have the same orientation from any point of the

curve.

IX. The System of Confocal Ellipses Connected with the Triads.

Weseek the points of a triad which correspond to a given point

z.
1 The map equation can be brought to the form

X* 3*— 22

by choosing the centre of the curve as a new origin and making a

suitable choice of the unit stroke. Wesee at once that the sum of

the x's for a given z is zero. In other words : The centroid of any

triad is the centre of the cubic.

Making use of the method known as Cardan's solution, put

x = lit -f v,

where // is real. Then

x l —$x = 22

becomes

#+ _l_ v >
_f_ 3fl */>v + zixtv* —3 (jti + p) = 22

And we have as two relations between v and fit,

22 = fl*t
3 + V%

,

and

(///-)- V) (fi-tV —i) = o.

When 2 is zero, the values of x are ±-\/s and o ; and when z is not

zero, we must have

i

v = —
.

This leads to the expression of x and z in terms of At/as follows:

*=/«/ + -,

Now if we assign any value to fi, and let / run around the unit

circle, x describes an ellipse with foci at x= + 2 and x = —2.

1 Harkness and Morley, A Treatise on the Theory of Functions, p. 39.
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But at the same time, z also describes an ellipse with its foci at

z =
-f- i and z = —I. These two ellipses are related in such a

way that a point z on one of them is correlated by the equation

x 3 —$x = 2Z

with three points on the other. Now the foci of both these ellipses

are independent of the particular value of /j. selected ; it follows that

if we assign successive values to ft, we shall obtain in each plane a

system of confocal ellipses of such a sort that the equation

x* —$x —22

establishes a one to one correspondence between them. In each

plane the origin is the centre of all the ellipses. Applying this

scheme to the case in hand, we see that a triad must be inscribed in

one of the ellipses in the #-plane. But the centroid of the triad is

the centre of the ellipse; so the ellipse must be the circumscribed

ellipse of least area of that triad. Wemay say, then, that

:

The triads of the orthic cubic are cut out on the curve by a particu-

lar system of confocal ellipses, and each ellipse is the circumscribed

ellipse of least area of the triad on it.

X. The Riemann Surface for an Orthic Cubic.

If we examine the equation

X* $X = 2Z

for equal roots, we find that the double points of the jc-plane are at

x=-j- i and at x = —i. These values of x correspond to the

branch points in the s-plane, z = -f i and z = —i

.

Let us for a moment replace the z plane by a three-sheeted

Riemann surface. All three sheets must hang together at infinity,

and two sheets at each of the branch points. Let the first and

second sheets be connected by a bridge along the base line from

-f- l to infinity, and the second and third sheets be similarly con-

nected by a bridge along the real axis from —i to infinity.

Select on this surface any large ellipse with foci at the branch

po mts, -iii*l ;uiy line as a director line. Now consider the contour

obtained by starting from a point of this inside the ellipse, going

thence along the line to meet the ellipse, along an arc of the ellipse

to meet the line, and then along the line to the point of departure.
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We can choose this path in such a way that one of the following

three cases must arise :

( i ) The contour passes through a branch point.

(2) The contour surrounds two branch points.

(3) The contour surrounds no branch point.

In case (1) we know that the cubic must have a node. In the

second case, by going three times around we can pass continuously

through every sheet of the Riemann surface and therefore through

every value of x. Or, thinking again of the .r-plane. we have a

unicursal boundary. Now it happens that the ellipse we choose

maps into one and not three ellipses on the .x-plane. If we imag-

ine this to expand indefinitely we shall have to consider the bound-

ary as our orthic cubic. It follows at once that

:

The orthic cubic which corresponds to a line which does not pass

between the branch points is unipartite.

If the contour includes one branch point, and therefore crosses

one bridge of the Riemann surface, we must go along two uncon-

nected curves to reach all the values of x. When these two curves

are spread on the .r-plane they lead at once to the conclusion that

:

The orthic cubic which corresponds to a line which passes between

the branch points is a bipartite curve.

XL Triads in Special Cases.

Let us turn our attention again to the two planes connected by

the relation

Xs 3* = 20

Wenotice that while the ellipses in the z -plane have their foci at

the branch points, the foci of the corresponding system of ellipses

are not the double points of the *-plane, but are the points

x = -f- 2 and x = —2, each of which, with one of the double

points counted twice, forms a triad.

As a rule there are two triads of the curve on each ellipse, corre-

sponding to the two points in which the director line cuts an ellipse

of the system in the z-plane. But unless the line go between the

branch points it will be tangent to one ellipse, consequently two

triads will coincide, and the cubic will be tangent at three places to

one of the ellipses of the system. No part of the cubic can be

inside of that ellipse. 9

PROC. AMER. PHILOS. SOC. XLIII. 177. T. PRINTED SEPT. 29, 1904.
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When At is i, the two ellipses degenerate into two segments,

x = f-\- t~ l or 2, —2,

22 = /'
-f- t~~ * or i, —I.

If the line pass between the branch points, and so cut the seg-

ment i, —i, two triads again coincide, but in this case the three

points lie on a line, and we do not have the triply tangent ellipse.

When the line c cuts the axis of imaginaries,

z -f- z = o,

we have

Z = p t •
,

and

Jri

? = p' eT.

It follows that am / = j, and so u>t is the reflection of/ in the axis of

imaginaries and w4
/ is a pure imaginary. Then, since we know that

»—*i 2, 3,

we see that Xj is the reflection of x % in the line x -f- x = o, and

that jc, is on that line. It follows that the triangle XyXjX, is

isosceles and that its base x
x
x t is parallel to the real axis. There is

again an isosceles triangle when t* is real. This triangle has its

vertex on the axis of reals and its base perpendicular to that axis.

From the discriminant of the quadratic in /i
,
/

(l

,

z
l —4,

we see that /' is real when z> ± i. In other words, if the director

line £ cut the axis of reals, but not between the branch points, we

have such an isosceles triangle.

>m the above considerations, we see that if the directorline is

either of the axes

.r -f x = o, x —x = o,

then one branch of the orthic cubic must be* right line; the re-
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maining portion of the curve must then be an ordinary hyperbola,

and the inclination of its asymptotes must be either £ or %*. The

first value refers to the case when the director line is the axis of

imaginaries ; and the last, to the case when it is the axis of reals.

XII. The Intersections of the Circumscribed Circle of a Triad with

the Cubic.

Suppose we put a circle through the points of a triad, and ask,

Where are the remaining three points in which it cuts the cubic ?

For convenience, let three points of the unit circle be taken as a

triad. The cubic is then

(x —A) (x —A) (x —A) = t»" (* —A1

) (* —A1

) (* —A
1

)-

On eliminating x from this and the equation of the circle we
obtain

(»_ A) <*- /,) c. - o =

^

'"'-y''-'
,f i*rr

or

as the equation of the three points sought. The roots of this,

x x
= x, x 2

= tox, x t = to
1

*,

are the coordinates of the vertices of an equilateral triangle. As
there is no restriction in taking the triad on the unit circle, we have

the following theorem

:

Jf a circle cut an orthic cubic in a triad, then the two curves have

three other intersections, which form an equilateral triangle.

XIII. The Pencil of Orthic Cubics Which Have a Triad in Common.

Wehave seen that the relation

(x —a) (x —/3) (x —y) = z

maps a line through the origin into an orthic cubic of which afty is

a triad. It must then map all the lines through the origin into a

single infinity of orthic curves 1 which have the common triad afiy.

1 Felix Lucas, Journal de I' ' Ecole Polytechnique, t. XVIII, p. 21.
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If we regard t as a parameter, we may say that

(x —a) (x —P) (x —y) = r (x —a) (x —J) (x —y)

is the equation of the pencil of orthic cubics which have the triad

afty. It will be convenient to give a pencil of this sort some name

;

let us refer to it as a central pencil, noting for our justification that

the centroid of the triad is the centre of every curve of the pencil.

If there were any real point other than a, p, or y, on two curves of

this pencil, it would map into a real point of the z-plane, not the

origin, which would be on two of the lines through the origin. As

this is manifestly impossible, it follows that

:

Two orthic cubics which have a triad in common have no other real

intersection.

Now we know that two cubic curves intersect in nine points, and

that if the curves given by the equation

(x —a) O—p) (x —y) = r(x —a) (x —P) (x —y)

really constitute a pencil, there must be six imaginary points whose

coordinates satisfy this equation whatever the value of r. Let us

form the following table of coordinates. The real intersections are

jfj = a, Xt = a,

x t
= p, x t

—P,

*i = r> x, = y.

It is evident that each of the following points :

X\ = a, Xt
= 0,

Xt
= a, x t = y,

Xt = P, #t
"= a,

x, —p,x, = y,

x t = y,x t —a
t

x* = r» •*• = Pt

satisfies the equation, independently of r. These points, the six

imaginary intersections of the pencil, are the antipoints 1 obtained

»C»ylcy, Collected Mathtmatica I Papers, Volume VI, p. 499.
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by selecting pairs in all possible ways from a, ft, y.

The figure of nine points in which two orthic cubics intersect

may be regarded as an extension of the orthocentric four-point

determined by two equilateral hyperbolas. It is convenient to

extend the term orthocentric to such a figure. Resuming the results

obtained above, we have

:

When three of the points of an orthocentric nine-point are a triad

of the orthic curves through the nine points, the remaining six points

are imaginary, and are the antipoints of the three real points. The

centroid of the nine points is the centre of every orthic cubic through

them.

It is convenient to speak of a set of orthocentric points deter-

mined by a central pencil as a central set. Since any three points

determine a pencil of orthic cubics of which they are a triad, any

three points, with all their antipoints, form a central orthocentric

nine-point.

XIV. The Foci.

Weshall now attack the problem of finding the foci of the orthic

cubic. Let us begin with a few words as to the way in which the

foci of a curve appear in analysis with conjugate coordinates. The
focus of a curve is the intersection of a tangent from one circular

point with a tangent from the other circular point. In other words,

if the circular rays from a point are tangent to a curve, that point

is a focus of the curve. Now the equation of the circular rays from

a point a, a, is'

(x —a) (x —a) =o.

Therefore, one of thelines is
,

x —a r= o,

and the other is

X —a —o.

Suppose the equation of the curve is

F(xx) = o. '

Now if the circular ray

x —a = o
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is tangent to the curve, then

J\ax) = O,

the eliminant of x between these two, will have equal roots. But

since the equation of a real curve must be self-conjugate, if this has

two coincident roots, then

F{ax) = O

must also have, and the point a, a, is a focus. It follows that to

find the foci of a curve, we have merely to find those values of x

which make two values of x coincide. They are the vectors of the

foci. Let us apply this method to the orthic cubic. The equation

may be taken in the form

x* —3X = 22 = a + ka v

where X is a real parameter and the director line is

a t -f AdTj = 2z, a -\- ka
v
= 22.

These relations imply the conjugate expression

x* —3.* = 22 = a -f- Xav

Two values of x become equal when D~z = o, *>.,'when

x* —1=0,

or

x = ± I.

These values of x occur when

a t -\-Xa
t
= ±:2,

or

Either of these values of X when substituted in

gives three points which are foci of the cubic.
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There are, in general, six real foci, which fall into two sets of

three. Each set of three corresponds to a single point of the z-plane,

and is, therefore, a maximum inscribed triangle of one of the ellipses

described above.

XV. The Foci and the Branch Points.

If we eliminate the parameter between

22 = a
% -f-

la
x

and

2z =a
t -f Xau

we get the equation of the line £

,

a x z —a-fi = aQa x
—a

x
a t .

Nowsuppose, for a moment, that this line does not contain either

of the branch points s = ±i. Then, if we put s = ±i in the

equation of the line and solve for z, we get a value which is not the con-

jugate of z, but is the vector of the reflection of the point z = ± i

in the line considered. The three points in the .r-plane got by

putting

k = - a^ 2

in the equation

x* —sx 22

are the points mapped in the 2-plane by the reflection of z = ± i in

the line £. It follows that

:

The real foci of the orthic cubic which corresponds to a given line

are the six points which correspond to the reflections in that line of

the branch points.

If the director line pass through one of the branch points {i.e., if

—gp±2
- is real), two foci coincide to form the node, and the

remaining one of the set is on the curve. One who looks at the

matter from the point of view of the Riemann surface might be

surprised that a branch point is to be reflected in the line in each

sheet of the surface and not in the two sheets alone which it con-

nects. A moment's consideration will show that whether or not
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two x's coincide depends on A alone, and that either of three values

of x give X a particular value. It is clear that the reflection must be

in every sheet of the surface.

In general, the orthic cubic is of class six. Since it cuts the line

at infinity in three points apolar with the circular points, it cannot

contain one of the circular points unless it is as a point of inflection.

There should, therefore, be six tangents from each of the circular

points and, consequently, thirty-six foci. The thirty foci still to

be accounted for are the antipoints 1 of the six real foci, paired in

all possible ways. When the cubic has a node it is of class four,

and has but four real foci. The node takes the place of the two

foci which coincide there.

The circular rays

X —a
v
= o

and

x —a a
= o

meet at a lt a
2 . So the thirty-six foci of an orthic cubic may be

represented by the scheme of coordinates

:

where /and/ run from one to six. It follows that the centroid of

the whole thirty-six is the centroid of the six real points ; that is,

the centre of the cubic.

Consider any selection of three foci. All their antipoints are

foci, and the nine points together make up a central orthocentric

set.

XVI. The Foci of the Or/hi c Cubic* which Have a Triad in

CommonLie on Two Cassinoids.

The foci of all the orthic cubic s which have a commoiHriad afiy /ir-

on two cassinoids which luivr their foci at «, /9, and y, and are ortho-

gonal to the orthic curves.

We know that these cubics correspond to all the lines through a

point, and that their foci correspond to the reflections of the branch

points in those lines. Now the reflections of a fixed point in all the

lines through a second point lie on a circle which goes through the

first point, and which has its centre at the second point. Accord-

•Salmon, l!i>;h(t riant Curvts, tiunl cliiimi, p. 122.
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ingly, the foci of the cubics will lie on the curves which are the

maps in the x-plane of two concentric circles in the 2-plane. The
centre of these circles maps into the triad common to all the cubics,

and the circles themselves map into two cassinoids of the sixth

order, about the triad, as M. Lucas 1 has shown. Each of the circles

goes through one of the branch points, and, therefore, each of the

cassinoids must have a node. If the point which corresponds to

the triad afty is equidistant from the branch points, the two circles

and also the two cassinoids coincide. In this case the cassinoid

has two double points.

The lines which correspond to the cubics are all perpendicular to

the circles which correspond to the cassinoids, and so, by the prin-

ciple of orthogonality, the ovals are orthogonal trajectories of the

cubics of the pencil.

XVII. The Positio7i of the Orthic Cubic in Projective Geometry.

I shall close this study of the metrical properties of the orthic

curve of the third order by showing that from the point of view of

projective geometry the orthic cubic is really a general cubic. Any
proper plane curve of the third order can be projected into an

orthic curve.

Weknow that the points of contact of three of the six tangents

to a cubic curve from any point of its Hessian lie in a line. Now
these three points, considered as a binary cubic, have a Hessian

pair. If this pair of [points be projected to the circular points at

infinity, the three tangents become equally inclined asymptotes,

and continue to meet in a point. The cubic curve is then orthic

and the transformation is accomplished. This projection requires

two points to go into given points, and can, therefore, always be

made. In projective geometry the orthic cubic is any proper plane

cubic.

As an illustration of the way in which information about the

orthic cubic applies to cubic curves in general, let us see what the

characteristic property that the asymptotes are concurrent and
equally inclined means. The circular points / and J are a pair of

points apolar with the curve. Their join, the line at infinity, meets

the curve in three points such that the tangents at these points meet

1 Felix Lucas, Geometrie des Polynomes, Journal de V Ecole Polyiechnique,

XXVIII, p. 5.
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in a point, C, of the Hessian. Now we know 1 that such a line

meets the Hessian in the point which corresponds to C. This leads

to the theorems that

:

The line joining two points apolar with a cubic curve meets the

cubic in three points, the tangents at which meet in a point of the

Hessian, and are apolar with the two points apolar with the curve?

The line joining two points apolar with a cubic curve, and a tangent

to the cubic at a point of this line, meet the Hessian of the given cubic

in corresponding points.

A more novel result is the following. We have seen (XIV, p.

28) that the foci of an orthic cubic fall into two sets of three, in

such a way that the two sets are triangles of maximum area inscribed

in two confocal ellipses. Now if we consider tangents from /and
/instead of foci, we have the following theorem

:

If a and b are a pair of points apolar with a cubic curve, then the

tangents from either of these points, say a. fall into two sets of three in

such a way that the line ab has the same polar pair of lines as to each

set of three.

Part Two

—

Orthic Curves of any Order.

I. Introduction.

In the preceding pages we have studied the metrical properties

of the orthic cubic in some detail. In the following portion of the

work I shall indicate an extension of the more important results

obtained in the study of the cubic to orthic curves of any order.

The general equation of the n lh degree between * and x contains

y£n(n —1) product terms. If it is to represent an orthic curve the

coefficients of these terms must be made zero. In other words, to

make a curve of the « ,h order orthic is equivalent to making it

satisfy y£n(n —1) linear conditions. After this has been done there

remain a« degrees of freedom.

II. The Orthic Curve is F.qut lateral.

The kinematical definition which we obtained for the orthic

cubic may be extended to curves of any order, thai is
i

• Sal- ktr I l<inr | UfVi , tliml edition, articles 70 and 175.

*"On the Algebra* I urv<-s," l>r. Kdward KasMT, BuUftini of the

Ameti ./// Mathematical Society, June, I901, p. 393.
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The path of a point which moves so that its orientation from n fixed

points is constant is an orthic curve of order n.

If <Zj, a
2 , , . . aa are the fixed points, the condition on x is

expressed by the relations

(x —ctj) (x —a
2 ) . . . (x —a

tt ) = pr
l

and

(* —«i) C* —«•) • • • (•* —an)=P Ti~
l

-

These lead to the equation of the curve,

x n —

j

1
^ n- 1 + ^;c

n - 2
. . . -j-tS (s a . . . +s^c a- 1 —xa)=o,

where the s's are the elementary symmetric combinations of the <zV

This is the general equation of an orthic curve. If we take x = '

^,

for a new origin, and make r* real, the equation becomes

* n + 1
.r

n- a —ajf-* ... —a~Kn -> + 0&~* + x* = o.

The asymptotes are the n equally inclined lines given by the factors

of the highest terms,

X* -}- X* = O.

These lines all pass through the origin ; it follows that the centroid

of the n points a lt . , . a u , is the centre of the curve. Since every

orthic curve can be brought to the above form, we see that every

orthic curve is equilateral. The converse proposition, every equi-

lateral is orthic, is not true. The general equation of an equilateral

may be put in the form

x* -f ax a
-f (xx) = o,

where (xx) is a perfectly general function of degree n—2. <P con-

tains jt(n —2) (n —3) product terms, which must vanish for the

curve to be orthic. To make an equilateral curve orthic is, there-

fore, equivalent to making it satisfy \(n —2) (n —3) linear con-

ditions. For n = 2 and n=$ this number is zero, so the equi-

lateral conic and cubic are orthic. For the quartic, this says that

to be orthic is one condition.

III. N-ads, Foci, Intersections with a Circle.

The relation

( x —fll ) ( x —a 2 ) . . . (x —aa ) = pr 1 =z
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may be regarded as mapping a line through the origin in the z-plane

into the orthic curve in the .r-plane. The methods of analysis

which were used, in the paragraphs referred to, in the study of the

orthic cubic may be extended to any n, and lead to the following

general theorems

:

On an orthic curve of order n there is a single infinity of sets of n

points, n-ads of the curve, from which all points of the curve have the

same orientation. All the n-ads have the same orientation from any

point of the curve (Part One, VIII).

Any n points may be taken as an n-ad of an orthic curve. If we

take n points of the unit circle as an n-ad, and find the remaining

intersections of the circle and the curve, we see that they are the

vertices of a regular polygon (Part One, XII).

Every circle through an n-ad of an orthic curve of order n meets

the curve again in the n vertices of a regular polygon.

The centre of an orthic curve is the centroid of every n-ad of the

curve.

For when the equation is taken in the form

.v
n + «^- 2 + . . . + an_,x = z

the origin is the centre of the curve, and is also the centroid of the

n points which correspond to a point z. This equation will have

two coincident roots whenever

Dx z=Lnx n~ l
-\- n (n —2) a

t
x a-*

. . . =0.

In general, this will give n —1 branch points in the z-plane. Each

branch point, when reflected in the director line, gives rise to //

real foci. If the line £ revolve about a point, each reflection

generates a circle (Part One, XIV). All // —1 of these circles are

concentric; and they map into n —1 cassinoids, on which lie the

foci of the curves which have the n-ad which corresponds to the

centre of the system of circles. These cassinoids are orthogonal

trajectories of the central pencil of orthic curves. Since each of

the circles must contain a branch point, each cassinoid must have

at least one node.

IV. The Orthic Curve Referred to its Intersections with a Circle.

Wc know that we may put in linear conditions on an orthic

curve. If wc make it go through 2// point! 08 the unit circle, its
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equation, expressed in terms of the elementary symmetrical functions

of the points where it meets the circle, becomes

x a —s^- 1 + s.x
- 2

1 Jso.aX
- 1 + x, n> = o.

The centre, found by equating to zero the « —i*
1 derivative as to

x, is

This is the midpoint of the stroke from the centre of the circle to

the centroid of the 2# points. The equation of an asymptote now
takes the form

x —
-i h = V—j 2d o —j, n_ t

s t

- 1
).

V. Construction of an Orthic Curve.

The method which I have proposed (Part One, V) for the con-

struction of an orthic cubic might be extended to the construction

of any orthic curve. For this purpose the instrument must have n

hands, moved by n weights. The centre of gravity of any number

of weights could be held by joining them together in sets of three

or less, and then joining again the centres of gravity of these sets.

This operation could be repeated until the required number of

weights is reached.

VI. Geometrical Characteristics.

The geometrical characteristics of an orthic curve of order n are

that it is equilateral, and that it intersects its asymptotes in points of

a second orthic curve of order n —2.

For consider the orthic curve referred to its centre,

x n
-\- a^- 2 —a t x

n- 3 ... —aix'-* + ~a^~ %

-f- x u = o.

The asymptotes, which are given by

x* -f- x" = o,

are concurrent and equally inclined, so the curve is equilateral.

The points common to the curve and its asymptotes lie on the curve

ajjc"
-1 —tfjjc

11-8
-f- . . . —atX

n ~ 3

-f- aiX
n~% = o.

But this curve is of order n —2, and is orthic.
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To require a curve to be equilateral is to impose in —3 con-

ditions, and to require the curve of order n —2, along which it cuts

its asymptotes, to be orthic is to impose £(# —2) (n —3) further

conditions, in all \n (n —1). But \n (n —1) is the number of

conditions required to make a curve of order n orthic.

Part Three —Pencils Determined by Two Orthic Curves and

Orthocentric Sets of Points.

I. Introduction.

We shall now take up the study of the pencils of curves deter-

mined by two orthic curves. The main purpose of this investiga-

tion shall be to learn what we can about the figure of n l points in

Figure 2. The hypocycloid of class five and order six, which is enveloped by the

asymptotes of curves in a pencil or orthic cubics.

which two orthic curves intersect. Such a figure of «* points we

shall call an Orthoecntric Set, or an Orthocentric tf-point.

There is a well-known proposition that all the equilateral hyper-

bolas (orthic conies) which can be circumscribed to a given triangle

pais through the orthocentre of the triangle. The four points, the

Vertices and the orthocentre of a triangle, or, what is the same thing,

the intersections of two orthic curves of the second order, have the

property that the line joining any two of them is perpendicular to

the line joining the other two. The term orthocentric is applied
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to a set of four points related in this way. Wewish to find out

what metrical property distinguishes the «2
-point, in which two

orthic curves of order n intersect.

II. The Central Pencil and Its Orthocentric Set.

The first generalization which we shall make is to show that any

pair of points, a, {3, together with their antipoints, a, ji and /?, a,

form an orthocentric four-point, a and /? determine a central pencil

of orthic conies,

(x —a) (x —/9) = t (a; —a) (x —/9),

and the antipoints are evidently on all the curves of the pencil.

If we consider r as a parameter in the general equation of an

orthic curve,

{x —a x ) (x —a%) . . . (x —aa ) = r (x —a
v ) (x —a.

2 ) . . . (x —a D ),

we obtain the equation of all the curves of which a
x . . . a a is an

n-ad. The points of the orthocentric « 2 -point determined by this

are the n real points a, and all their antipoints. But as the pencil

is determined by the n real points it follows that

:

Any n points, with all their antipoints, form a central orthocentric

n*-point.

The centroid of the «*-point determined in this way is the cen-

troid of the n real points. The real and imaginary foci of any

curve are such a set of orthocentric points.

III. The Pencil of Orthic Cubics through Five Points of a Circle.

The Locus of Centres.

Wehave seen that six points of a circle determine an orthic cubic

curve. If the six points are t lt t if t 3 , t 4 , t s , t t , then, as we have seen,

the equation of the orthic cubic through them is

X3
SX

X2

-f" S,X St -J- X«* Sf X^ -f- SgX* = o.

If we replace t 6 by a variable parameter t, and put <r's for the ele-

mentary symmetrical combinations of t x . . . t s , we have

r. = *i + *, s 4 = <r
t -f ta

3 ,

s2
= <r 2 -f- t<r„ ss

= <r 6 -f- t* u
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If we make this substitution we get

* —Oi + 'K + 0« + '*i)« —fa + *v)

+ ("4 + '*•)* Os + ^4)^ + fl-
5 ta S = O.

This is the equation of a pencil of orthic cubics through five points

of a circle.

The centre of the curve through the six points is x = \s
x

. If

the sixth point move around the unit circle, this becomes

This is the map equation of a circle. We have thus the theorem :

The locus of centres of the orthic cubics through five points of a

circle is a circle. Its radius is one-third that of the given circle, and
its centre is the point ^a^

M. Serret 1 gives an elegant synthetic proof of the theorem that

the locus of centres of the curves of a pencil of equilaterals is a

circle. I obtained the same result for orthic curves independently,

and, as the analysis is so direct, it seems advisable to let it stand.

IV. The Hypocycloid Enveloped by the Asymptotes.

I shall now prove, for the pencil of orthic cubics through five

points of a circle, a theorem which M. Serret 1
states without proof.

The theorem referred to, when stated for orthic cubics of the pencil

under discussion, becomes

:

The curve enveloped by the asymptotes of all the orthic cubics

through five points of a circle is an hypocycloid of order six and class

five.

It is circumscribed to the centre 'circle of the pencil, and its

cusps lie on a concentric circle five times as large.

We found that the equation of an asymptote, in terms of the six

points where the curve cuts the unit circle, is

(* —i'O + f~*G —iVi
1

) o.

If we replace /, by the parameter /, this becomes

• Sur le» faisceaux reguheri et lei equi'otcres d'onlre n. Paul Set rtt, I 'tmpUs

h'nului, 1895, t. 121, pp. 373-5.
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we seek the curve enveloped by this line, as / runs around the unit

circle.

For the sake of simplicity, let us refer this equation to a new

system of coordinates, so chosen that the centre circle of the pencil

becomes the new unit circle. The equation becomes

x —/+ f ^~t (x —r l )=o.

If now we take an axis of reals which makes <r s = i, and also put

t 3
for /, we have

XT' 1
T* -f- X T'

3 = O.

The map equation of the curve enveloped by this line is obtained

by equating to zero the result of differentiating with respect to r.

It is

X = 3T_1 2T 3
.

This is a curve of double circular motion. The curve is of order

six, for it meets any line,

where

I —r
—

?
2:

or

2r 6 —2t 5 —ar- -|- 3T —3 = 0.

This gives six t's, and, therefore, the curve is of the sixth order

In order to determine the class of the curve, we must examine the

equation of a tangent,

XT' 1 T2

-f- X T"
S = O.

This is of the fifth degree in the parameter, and there are, therefore,

five tangents from any point x.

The stationary points, or cusps, are the points where the velocity

of x is zero. For such a point we must have Drx = o, and at the

same time | r
|
= 1. Both these conditions are satisfied by

t = V —1.

The curve has, therefore, five real cusps ; one when r is each of

the fifth roots of minus one.

PEOC AMEEPHILOS. SOCXLIII. 177. V. PRINTED OCT. 19, 1904.
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If we put *! = —i we get a cusp.

X = 3«" 2 2K3

,

Since multiplication by * 2
is equivalent to a rotation |-, we see that

the locus of cusps is a circle, about the centre of the pencil, and

five times as large as the centre circle. A rotation f- sends each

cusp into another, and so the cusps are equally spaced along the

cusp circle. The intersections of the hypocycloid with the centre

circle,

are obtained by solving x = x~ x for r.

Wehave

* = 3r-
1 - T 2r 3

,

and

X = 3T8 2T"
3

.

The parameters of the points sought are the roots of

I2T 6 —6t 10 —6=0,
or of

(t 5 —i)* = o.

There are five pairs of coincident intersections. But since x cannot

be less than 1, it follows that the curve is tangent to the circle in

five places.

Wehave obtained this hypocycloid as the locus of one asymptote.

Rut all three asymptotes envelop the same curve, for if we put to for

f <r
6 we get

X = 3«iT"' 2T8
.

This lias a cusp at k"x —5 ; it is, obviously, the same curve.

V. Perpendicular Tangents oj the Hyp,

The equation of a tangent to the curve

1 —t* -f- x —f* = o.

That of a perpendicular tangent,

—tfr'
1 —t 1

-f x -f- r' - - o.
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These two lines meet at

In other words, Perpendicular tangents to the envelope of the asym-

ptotes meet on the centre circle.

Wehave here a verification of the known property of the hypo-

cycloid of this class, that the tangents from a point of the vertex

circle are all real and form two regular pencils. 1

VI. The Orthocentric Nine-point of the Pencil through Five Points

of a Circle, and the Extension to 2n—/ Points.

Let us now consider the figure of nine orthocentric points, five of

which are on a circle. The equation of the pencil of orthic cubics

through five points of a circle is

v
:i —(*, + /).v

2 + 2 + /*»)* —(<r, + to t )

+ 0< + **»)* —
{

<r
5 H- to^x* + *«a? = o.

Weknow five of the points of the orthocentric nine-point deter-

mined by this pencil, and we seek the remaining four. Rewrite the

above equation as

4- (/X —I ) («r, —<r
4x -f-

<r
5 .v- ) = o.

Now if both

and

x*a t
—<-

i x -p <r t

can become zero for conjugate values of * and x, then those values

are the coordinates of a real point which is on every curve of the
pencil, and is one of the nine points. If we put <r,= I, as we may,
these two relations become

x 2 —ffj.r -j- <t 2
= o,

1 F. Morley, " On the Epicycloid," American Journal oj Mathematics. Vol
XIII, No. 2.
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and

A'' <T
l
X

1
-\- G

u
—0.

These are conjugate equations and so can be satisfied by the co-

ordinates of real points. Solving them, we get a pair of real points

and

t
1
—Vffi" —4<t

2
- g

x
—Vct, 2 —4ff

2 .

But further, we notice that the antipoints, %, x 2 , and #„ g^, of

these make the equation of the pencil vanish for all values of the

parameter. They are the remaining points of the orthocentric nine.

This leads to the theorem that

:

If five points of an orthocentric nine-point are on a circle, of the

remaining four points two are real, two are imaginary ; and these

four form an orthocentric four-point.

The centroid of the nine points is

This is the centre of the centre circle of the pencil.

We can extend these results to the case of «2
-points, 211 —1 of

which lie on a circle.

The pencil of orthic curves of order // which go through 2n —1

points of the unit circle is given by

*• —(»i + ** + (*i -f- 1*0 ** —+ • • •

(#M+ /*»„-,) Tv""' —(<r ln ., + /*„_,) Jf* + <r iu tx a = o.

If we let *,„_, = 1, this becomes

(,r _ /) (*-» _ <,,*-» + c^-* {- — . . er.
,

)

+ (.7/ —1) (.>' —~*&* + —. . . *„_,) —o.

Now since the coefficients of (a —/) and (v/— 1) are conjugate

forms, there are n —1 real points, in addition to the points/,, /,

.... /„, ,, which arc on all the curves of the pencil. Further,
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all the antipoints obtained by pairing these in all possible ways

satisfy the equation for all values of /. Now we know that the

(n —i)
2 points thus found form an orthocentric set. Weare now

in a position to state the following general theorem :

If 2n —I points of an orthocentric set of tf -points lie on a circle,

then the remaining (n —i)
2 joints of the figure form a central ortho-

centric set of which n —i points are real.

The vectors of the n —i real points are the roots of

x n -i _ ff^- 2
-}- ^v"- 3

}- . . . <r n . 1
= o.

VII. The Pencil Determined by Any Two Orthic Curves.

Weare now ready to consider the most general pencil of orthic

curves. Form the equation

a° _ {a x -J- ta\) a—1

-f- (a, 4 ta',) x u ~-
\- . . .

—(«*_, 4 ^'
2n -i)

^' n- 1 + tx a =o,

where / is a parameter which has the absolute value unity. Now
for every value of / this represents a real orthic curve of the « th order,

provided

a Y -f ta\ = (a 2n _ y -f- ta' 2n s )t l

,

or

|
(is —«

r

2n-v
I

=
I

a\- —«*-, |

•

For if this holds, the equation can be put in the known form

(a —a
1 )(x —a.

2 ) . . . =r, (a —«,) (x —a 2) . . . (a —a n ).

Now let

An —ai x n~ l + «.
2a"- 2

\- . . . —a 2n _,A n- 1 4 a., ax* = o,

and

be the equations of any two real orthic curves. Then

and
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We can choose the a's in such a way that the pencil will include

the given curves, (i) and (2), for the 4/z —2 equations

a y = #t + A^'v,

a' v = a y -f- t 2a\, v=i . . . 2n—

1

just suffice. Wemust show now that when the coefficients are deter-

mined as above, all the curves of the pencil are real.

Now we have

and

a -2a—v
== ^2n—v T" *\ a 2n—

V

From these, we get

a v + Aa',. = a y = a. ia _ v ^ \ = rt 2ll _ v ^ '

-f- a'. in _Y ,

and therefore

a y
—a' J_ v = (<7, u_ y —a'v)A

_1
.

But this is the condition that every curve of the pencil be real. It

is clear that no curve not orthic can be included in the pencil. So

we see that

:

Any two real orthic curves of order n determine a pencil of real

curves of the same order, all of which are orthic.

VIII. The Serrct Circle, or Locus of Centres.

M. Serret's theorem (Part Three, IV) on the locus of centres is

easily verified. The centre of any curve of the pencil is

Now if/ is regarded as a parameter, this is the map equation of a

circle with its centre at

The locus of centres of the most general pencil of orthic curves is a

In the special case where n of the intersections of the pencil are

at infinity, the locus of centres degenerates into a right line. A
pencil of tin type may be written

*_*=£*-*+...
t

'.v-'-f.v^o,
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where ^ is a real parameter. The locus of centres is

The elimination of A from this and its conjugate gives

the equation of a right line.

IX. The Hypocycloid Enveloped by the Asymptotes.

Let us now seek the curve enveloped by the asymptotes of the

curves of a general pencil. The equation of an asymptote of the

curve given by t
x

is

* - \ («i + ha\ ) + VA\* —Z ten-i^
1 + «'»-0 } =o,

or

* —i («i 4- /i«'i) + V4 i * —(<*i + A^i) r*
= °-

For convenience, transform to the centre of the pencil, -^a, as a

new origin. The equation becomes

Putting t° = /, we get

and finally,

x _ -y lZ » + zx —;<*>'- = o,

at- 1 _ itf^T— > + x —s-a'iT"" = o.

Now the map equation of the curve enveloped by this line as r

varies is

nx = na\z x - a
-f (i —«) a'jt -

.

Now this equation represents a curve of double circular motiorr.

• Weknow that

and using it we get

nx = na\tr x
T

x ~u + (i —n) a\r n
.

Now if we make t 2 real, and then regard the centre circle as the unit
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circle, i.e., adopt
|

—x
\

as the unit length, the equation takes the

form

x = ;n l - n
-f (i —n)r n

.

This is the equation of an hypocycloid of the kind found as the

locus of asymptotes of a special pencil of orthic cubics. Its vertex

circle is the centre circle of the pencil. It has cusps when

DTx = o,

and

\r\ =1,

simultaneously, or when

r
2 "- 1 + i =r o.

The parameters of the cusps are the 2n —i" roots of —i.

If we let * 2n_1 = —i, a cusp is

x = ml - a + (i —«) k°

or

XKn 1 = n —(i —n)

The absolute value of a cusp is, therefore, 2n —i.

Since the equation of a tangent,

x —ia\T° + rx —ir'-
n a\ = o

is of the2>* —i" degree in the parameter r, the hypocycloid is of

class m—i. If we eliminate .v between the equation of the curve

and the eauation of anv line.and the equation of any line

' * = TZTr

we get an equation of the 2« lh degree to determine the parameters

of the points of intersection. The curve meets any line in 2/1

points, and is therefore of order in. We have now established

analytically the theorem stated by M. Serret, as far as orthic curves

are concerned. It is
1

The iuivr MOtloptd ly the asymptotes of a pencil of orthic curves of

' 11 it ,in /ivfo.y, /<>/,/ <f o/./rr 211, and of </<i\s 211 —1. Its VtrtiX

circle is the centre ,:>,/,- ,</ the ftncil, an.f its cusp circle is concentric

nith that circle, and iv\ —1 times (U la>

If we bear in mind that any difference between an orthic curve
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and any equilateral does not affect the terms of the n th and n —i"

degrees of the equation, we see that the method of proof used above

is applicable to equilaterals in general.

X. A Circle Determined by Any Odd Number of Points.

It is a well-known proposition that the centres of the equilateral

hyperbolas circumscribed to a triangle lie on the circle through the

mid-points of the sides of the triangle. This circle is usually called

the Feuerbach, or nine-point circle of the triangle. Now we have

seen that an orthic curve of order n may be made to satisfy zn lin-

ear conditions; it follows that any odd number, zn —1, of points

determine a pencil of orthic curves of the n lh order. Connected

with this pencil is the centre circle, or, as I propose to call it, the

Serret circle, which is, in a sense, the generalized nine-point circle.

Every figure of an odd number of points has connected with it a

unique circle, the Serret circle, which in the case of three points is

identical with the nine-point circle of Feuerbach.

Further, every odd number of points, zn —1, determine the

pencil of orthic curves through them, and therefore the remaining

(n —i)
2 points of the orthocentric //

2
-point. In the case of three

given points, this set of (n —i)
1 points is a single point, the ortho-

centre of the given points. So we are led to the theorem :

To every figure of 2n —1 points belongs a figure of (n —\f points.

In one sense the Serret circle belongs to rir points, but of these

only zn —1 may be taken at random.

XI. A Point Determined by An Even Number of Points.

Now consider an even number, zn, of points which do not belong

to an orthocentric «2
-point. There is a pencil of orthic curves

through every zn —1 points which can be selected from them, or zn

pencils in all. Now these pencils give rise to 2« —1 Serret circles,

but there is one orthic curve through all zn points and its centre is

on each of the circles. Wehave, therefore, the result :

The 2n Serret circles, given by all the sets of zn —1 among 2n

points, meet in a point.

XII. The Relation of the Orthocentric x?-point to the Circle oj

Centres.

In section VIII we obtained the pencil of orthic curves deter-

mined by the two given curves,
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(1) * —a^v"- 1 + a
2
x»- 7

^ . . . —a^x"- 1 + a,~x n = o,

and

(2) .r
n —a\x"- 1 + aVv n- !

\. . . . —a'^x*- 1 + a' 2nI n = o.

Wenow wish to show that the centroid of the orthocentric ri
1 -

point in which these two curves intersect is the centre of the centre

circle of the pencil. If we rewrite (1) and (2) in terms of .v we get

(1) (-v —.v
t ) (x —x t ) . . . (* —x n ) = o,

and

(2) (x —x\) (x —x' 2 ) . . . (x —x' u ) = o.

If the j's refer to the elementary symmetrical functions of the

roots, we have

•Ti = «2n-i> S'i = *te-ll i —x, a, . . . n —1.

s a = —(x* —a***" 4
4- a,*""* . . . a D) a,-\

S' a = —(*" —aVV- 1 + a

'

2x°~* . . . a' n ) a'. ia
-\

Now the eliminant of x between these two equations is

(.v, —x\) (x
l
—x',) . . . (x\ —a'„).

(it —X-
7

,) (A", —?,) . . . (I-, —?„).

& —x\) (\ u —7xJ .

i ) . . . (x a —1\) = O.

This is a function of degree tr In \, and as x occurs in s a and ./„

klone, we need consider those terms alone in which the products s a

and i' a appear. These art

:

r > „, »-'.'
1

n ' n ~~ l
c °—

s'

s'
"

or

(s a —/„)";

or, in terms Oi
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When this is expanded and arranged in powers of x the first and

second terms are

Now the sum of the roots is

O, 7/ r
,

and their centroid is

I I a* a' —a'_a,'2a" 1 " 2a"l

a.,. —a'.
= *'.

"2a " In

Now a2n = /„ and a' 2n = t ly and we have also the relations

a v = a v -f Z^',,

and

a' v = a v + / 2 a' v ,

from which we obtain

.J __ 1 Vl_+ 'iV^ —Vl^lW
'l r l

= \<h'

But this is precisely the centre of the centre circle

Weare thus enabled to conclude with the general theorem

:

The centroid of an orthocentric set of points is the centre of the

centre circle of the pencil of orthic curves through those points.

Johns Hopkins University, May 20, 7004.


